An Analysis of Low-rankmodifications of Preconditioners for Saddle Point Systems
نویسندگان
چکیده
We characterize the spectral behavior of a primal Schur-complement-based block diagonal preconditioner for saddle point systems, subject to low-rank modifications. This is motivated by a desire to reduce as much as possible the computational cost of matrix-vector products with the (1,1) block, while keeping the eigenvalues of the preconditioned matrix reasonably clustered. The formulation leads to a perturbed hyperbolic quadratic eigenvalue problem. We derive interlacing results, highlighting the differences between this problem and perturbed linear eigenvalue problems. As an example, we consider primal-dual interior point methods for semidefinite programs, and express the eigenvalues of the preconditioned matrix in terms of the centering parameter.
منابع مشابه
Two preconditioners for saddle point problems in fluid flows
In this paper two preconditioners for the saddle point problem are analysed: one based on the augmented Lagrangian approach and another involving artificial compressibility. Eigenvalue analysis shows that with these preconditioners small condition numbers can be achieved for the preconditioned saddle point matrix. The preconditioners are compared with commonly used preconditioners from literatu...
متن کاملH - matrix preconditioners for saddle - point systems from meshfree discretization 1
In this paper we describe and compare preconditioners for saddle-point systems obtained from meshfree discretizations, using the concepts of hierarchical (or H )matrices. Previous work by the authors using this approach did not use H -matrix techniques throughout, as is done here. Comparison shows the method described here to be better than the author’s previous method, an AMG method adapted to...
متن کاملH-matrix preconditioners for saddle-point systems from meshfree discretization∗
In this paper we describe and compare preconditioners for saddle-point systems obtained from meshfree discretizations, using the concepts of hierarchical (or H-)matrices. Previous work by the authors using this approach did not use H-matrix techniques throughout, as is done here. Comparison shows the method described here to be better than the author’s previous method, an AMG method adapted to ...
متن کاملRegularized HSS Iteration Method for Saddle - Point Linear Systems
We propose a class of regularized Hermitian and skew-Hermitian splitting methods for the solution of large, sparse linear systems in saddle-point form. These methods can be used as stationary iterative solvers or as preconditioners for Krylov subspace methods. We establish unconditional convergence of the stationary iterations and we examine the spectral properties of the corresponding precondi...
متن کاملCombination preconditioning of saddle point systems for positive definiteness
Amongst recent contributions to preconditioning methods for saddle point systems, standard iterative methods in nonstandard inner products have been usefully employed. Krzyżanowski (Numer. Linear Algebra Appl. 2011; 18:123–140) identified a two-parameter family of preconditioners in this context and Stoll and Wathen (SIAM J. Matrix Anal. Appl. 2008; 30:582–608) introduced combination preconditi...
متن کامل